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Effect of finite conductivity on the inviscid stability of an 
interface submitted to a high-frequency magnetic field 
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The stability of an interface between a liquid metal and an insulating atmosphere, 
in which an inductor generates a uniform alternating magnetic field, is investigated, 
with particular attention given to the influence of the electrical conductivity of the 
liquid. I n  a range of high frequencies, a quasi-steady approximation is justified, in 
which the pulsation of the electromagnetic forces is negligible compared with their 
mean part, and the unsteadiness of the magnetic field only appears through the skin 
effect. By means of a linear analysis, the influence of the alternating magnetic field 
on a perturbation of the interface is found to be neutral for wavevectors perpendicular 
to the magnetic field, and stabilizing for any other orientation. The stabilizing effect 
is largest when the angle between the wavevector and the magnetic field is zero, and 
it increases with increasing wavenumber. This effect, maximum for an infinitely 
conducting medium, quickly decreases with the electrical conductivity. 

1. Introduction 
To be able to  melt, purify, alloy or shape a metal without having resort to  any 

wall, crucible or mould is an old dream of metallurgists. Some recent processes using 
alternating magnetic fields suggest that this dream is not completely fanciful and 
might become actual before long; Okress et al. (1952) and Sagardia & Segsworth (1977) 
achieve the levitation melting of important loads of metal ; Getselev (1966) control 
electromagnetically the ingot shapes in the continuous casting of aluminium devices ; 
Etay & Gamier (1983) use high-frequency fields to shape liquid-metal columns. I n  
all these patented techniques, the undesirable and sometimes prohibitive contact 
between liquid metal and walls is suppressed and chemical or physical contamination 
of the melt from the crucible is avoided. The equilibrium between the applied 
electromagnetic forces, gravity, surface tension and fictitious inertial forces deter- 
mines the position of the liquid-metal-atmosphere interface. The stability of this 
interface, whose shape will give by cooling and solidifying the desired shape of the 
final ingot, is a basic requirement in order to achieve successful industrial electro- 
magnetic devices. Through the new mechanisms that i t  involves, the unsteadiness 
and the inhomogeneity of the applied magnetic field bring an  original character to 
this stability problem. 

The main results concerning the effect of a steady uniform magnetic field on the 
stability of an interface (Chandrasekhar 1961, p. 428) are independent of the problem 
we are interested in. They concern the generally stabilizing influence of such fields 
because of Joule dissipation. In  our case, the geometrical deformation of the interface 
between an insulating atmosphere and an electrically conducting liquid leads, by 
means of a mutual-influence mechanism, to a perturbation of the induced curr‘cnw 
and of the electromagnetic forces in the thin layer near the interface where they arr 
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applied. Such an interaction between the position of the interface and an external 
inductor is specific to alternating magnetic fields and does not appear with steady 
fields. Likewise, the results established by Roberts (1973) about the effect of a steady 
magnetic field on Kelvin-Helmholtz instability concern unsteady flows and are 
independent of the subject of this paper. 

General equations for the stability of unsteady parallel flows of a viscous 
electrically conducting fluid in an unsteady magnetic field were first derived by Drazin 
(1967). The Joule and viscous dissipation, the mechanisms connected with the 
pulsation of the magnetic field and with the unsteadiness of the flow, which coexist 
and interact, are taken into account in this problem, which then becomes highly 
complex to  analyse and mathematically intractable. To get more than meagre results 
by means of general considerations, such as the power equation which shows the 
destabilizing effect of the pulsation, Drazin is led to make restrictive approximations 
and only considers the particular case of a non-dissipative vortex sheet in an 
alternating magnetic field. In  a range of moderate frequencies where the magnetic 
field may be considered as uniform over a wavelength, the influence of the field is 
found to be destabilizing. However, neglecting all dissipative mechanisms prevents 
the drawing of general conclusions, since dissipation may considerably modify the 
paran.etric stability. 

I n  order to clarify the effect of the unsteadiness of the magnetic field, our study 
considers the range of high frequencies w such that 

where R, and N8 are respectively the magnetic Reynolds number and the interaction 
parameter based on the skin depth S = ( $ L c T ~ ) - ? .  Here p denotes the magnetic 
permeability of the fluid, CT its electrical conductivity and p its density. B denotes 
the amplitude of the applied magnetic field and C' a typical velocity. 

These two conditions define a particular class of MHD problems in which the 
magnetic field is substantially independent of the motion of the fluid, ( a ) ,  which is 
driven by the mean part of the given electromagnetic forces, the unsteady part of 
which i t  cannot feel, ( b ) .  Condition ( a )  is classical and implies that  the currents 
induced by the motion of an electrically conducting fluid particle across the magnetic 
field lines are very small compared with the currents induced by the unsteadiness 
of the magnetic field, responsible for the skin effect. Condition ( b )  justifies an 
important quasi-steady approximation similar to that introduced by Alemany & 
Moreau (1977) in another context. If w is high enough i t  is easy to  show that the inertia 
of fluid prevents it from following electromagnetic oscillations pulsating with 
frequency 2w. Indeed the variation A 6' of velocity of a fluid particle submitted during 
At to such quickly pulsating forces is given by 

A V  B2 
p-" ) J x B (  --- 

At p S  . 

During a half-cycle of given sign (At - w - l ) ,  the relative velocity increment is 

AT7 B2 gB2S -----_ - N,. 
I' ppSI'w p6' 



Stability of a,n interface subm,itted to a high-frequemy magnetic field 367 

Thus N8 characterizes the degree of sensitivity of the fluid to pulsating forces. IS  
N8 < 1 ,  i.e. if w is high enough, the liquid metal is insensitive to the unsteady part 
of the electromagnetic forces, and the pulsation of the magnetic field only appears 
through the skin effect. This explains why high-frequency magnet>ic fields can lead 
to steady motions and stationary free surfaces as observed in the studies of Getselev 
& Martynov (1975),  Szekely & Yadoya (1973), and Tarapore & Evans (1976).  

In  such contexts i t  is very tempting to consider infinitely high frequencies which 
prevent any penetration of the magnetic field into the liquid metal, which may then 
be assumed to  be perfectly conducting and submitted to a steady magnetic field with 
intensity equal t o  the r.m.s. value of the corresponding unsteady field. Sagardia (1974) 
studied the stability problem we are interested in, by using this procedure. He found 
a stabilizing effect of the magnetic field upon disturbances whose wavevector is 
parallel to the magnetic field, and a neutral effect upon disturbances whose 
wavevector is perpendicular to the magnetic field : this effect is closely analogous to 
the stabilizing effect of a d.c. field a t  the boundary of a perfectly conducting fluid 
which is well known from studies of instabilities of plasma confinement (see Bateman 
1978, p. 54). 

However, is such a procedure realistic for the high-frequency fields used in 
metallurgy, where the skin depth does not reduce to a current sheet? Does the 
conclusion hold for disturbances whose wavelength is shorter than the skin depth ? 
What is the influence of the perturbation of the electromagnetic forces which is not 
reducible to the magnetic pressure considered by Sagardia (see Moreau 1980a) ? It 
is the aim of this paper to  answer these questions by examining this stability problem 
in the domain of frequencies 103-105 Hz often encountered in industrial devices. I n  
this domain the order of magnitude of R, and N8 is often less than lo-,, and 
conditions ( a )  and ( b )  prevail rather than those considered by Drazin. Finite skin 
depth has been taken into account by Volkov (1962) in the particular case where 
rapidly travelling magnetic fields are used to contain a heavy conducting fluid against 
the force of gravity. Stability conditions were derived as function of the spatial period 
of the travelling wave and of the height of the fluid layer. 

The initial equilibrium state and the stability problem are formulated exactly in 
$ 2 .  I n  93 the equations of motion linearized with respect to the small amplitude of 
the disturbance lead to  a dispersion relation similar to the dispersion relation 
obtained in the classical Rayleigh-Taylor or Kelvin-Helmholtz problems, but with 
a new term in the expression for the external forces which characterizes the influence 
of the alternating magnetic field on the perturbation of the interface. This new term 
keeps a constant sign, whatever the values of the parameters, which leads to a 
stabilizing (or neutral) effect of the magnetic field. 

2. Formulation of the problem 
Let two inviscid fluids of densities pj (i = 1,2) ,  be separated by a horizontal 

boundary a t  z = 0. The subscripts 1 and 2 distinguish respectively the lower and the 
upper fluid. The two fluids may be a t  rest or flowing in the same direction Om with 
uniform velocities Uj. An alternating magnetic field B, = (B, cos wt, 0 , O )  directed 
along Ox (figure 1 )  is applied in the insulating fluid 2 .  According to  the condition 
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FIGURE 1. Configuration of the problem. 

the resulting magnetic field in fluid 1 ,  of finite electrical conductivity a, governed 
by a pure diffusion mechanism, satisfies 

aB, 1 -- - -V2B,, 
at 

and is given, in the basic state, by 

B = [B, ezIs cos (wt + z / S ) ,  0, 01. (3) 

Let us introduce a perturbation, which may be expanded in terms of normal modes. 
In the perturbed state the equation of the interface becomes 

z ,  = eft) e i k .  I, (4) 

where the real vector k = (kx, k2/ ,  O),  ~ ( t )  = E ,  eist (with s complex), and it is understood 
that z,, is the real part of the complex right-hand side. Because of the quasi-steady 
approximation, a t  any time the magnetic field is independent of the motion of the 
fluid, and is only governed by the interface geometry. Then, to  determine the 
magnetic field it is convenient to consider E as a constant. 

The skin effect, through the mutual-influence phenomena it introduces, plays a 
fundamental part in the stability problem. Hence, to illuminate the phenomena, the 
skin depth 6, however small it may be, must be taken as the typical lengthscale of 
the problem. Thus the amplitude E of the perturbation is assumed to be small 
compared with 6 to enable the linearization of the equations with respect to the 
small parameter €/a. 

The magnetic field, the velocity and the pressure are affected by the perturbation 
of the interface and may be written as 

W .  3 = B.+b. ,  3 3  V .  3 = Uj+~j ,  9 j  = q+pj, ( 5 )  
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where the lower-case letters denote the perturbations of the different variables. The 
boundary conditions, and especially continuity across the interface of the pressure 
and the normal component of velocity, allow us to express these variables in the form 

Dealing 
fluids is 
between 

with the magnetic field 
the same imposes the 
the two fluids of finite 

, the assumption that the permeability p of the two 
following condition across the perturbed interface 
electrical conductivity : 

Then in the perturbed state a discontinuity appears in the x-component of the basic 
magnetic field, which must be compensated for by the corresponding components of 
the magnetic-field disturbance : 

(b1z-b2z)z-z0 = 0. ( 8 c )  

Since the disturbance E is assumed to be small compared with 6, it is possible to 
linearize the condition on the x-components with respect to €18: 

with 8, = ( s + w ) t + k . r - i n ,  ( I O U )  

8, = ( s -w)t+k.r+$r .  ( l o b )  

Because of (9) i t  is natural to seek the magnetic-field disturbance in the form 

bj = fj(z)eiel+gj(z)eis2. (11)  

The Laplace equation for the upper fluid and the diffusion equation for the lower 
one, together with the condition that all disturbances must vanish far from the 
interface, lead to the following expressions for the perturbed solenoidal magnetic field : 

where A, C ,  M ,  N are constant vectors, 

and y* denotes the complex conjugate of y .  
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Finally the components of the magnetic-field disturbance in the insulat'ing and in 
the conducting fluid read 

Interesting information can be deduced from the expressions ( 1 4 )  giving the 
perturbed magnetic field in the insulating fluid. Let us consider a disturbance whose 
wavevector is parallel to the magnetic field (ky = 0 ;  k ,  = k ) .  I n  this particular case, 
the magnetic field g2 is two-dimensional and may be derived from a stream function 

In this asymptotic case of very-short-wavelength disturbances (kS -+ a), this 
function reduces, to the lowest order in (kS) - l ,  to 

When (kS)-' -+ 0 the stream function coincides with the stream function in the basic 
state: the magnetic-field lines remain parallel to Ox and cross the peaks of the 
perturbed interface, which are then submitted to flux variations inducing a restoring 
force whose effect is to flatten the free surface. A stabilizing effect then arises in this 
case. 

I n  the asymptotic case of very-long-wavelength dishrbances (kS + 0) the stream 
function reduces to 

$ = - ~ B O z ( e i o t + e - i w t ) + $ B , e o ( e i ( S + w ) t  + & S - w ) t  ) & k x e - k z  (18) 

which, using (4), may be written equivalently as 

Since ke, 4 1 ,  along the interface z = zo 

$ = 0 + O(ke0)2. (20 ) 

The perturbed interface remains a magnetic-field surface from which the magnetic 
field diffuses exactly as it did in the basic state, and the induced electromagnetic forces 
are only modified a t  the second order in e,. A neutral effect of the magnetic field is 
therefore to be expected. The case where the wavevector is perpendicular to the 
applied magnetic field leads obviously to the same conclusion. 
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It is to be noticed that these results, closely analogous t o  those relating to 
Sargardia’s analysis, do not depend on the mechanical properties of the two media : 
the stability problem is only governed by the interface geometry. The specific 
influence of the magnetic field ignores the mechanical properties of the two superposed 
media, and the above conclusions hold for various media, elastic solids or non- 
Newtonian fluids for example. This fact is confirmed by the detailed analysis of $3. 

Ampkre’s law easily gives the current density j associated with b. This induced 
current j = ae originates only from the deformation of the interface which introduce 
the mutual-influence phenomena between the conducting fluid and the external 
inductor. Other currents induced by the perturbed flow across the basic magnetic 
field lines and by the basic flow across those of the magnetic-field disturbance are 
small because of the assumption that the magnetic Reynolds number is small. It is 
possible to make this assertion precise by distinguishing three complementary parts 
of the actual perturbation of the current density : 

j, = ae, induced by the deformation of the interface and independent of any fluid 
velocity ; 

j, = a(e, + u x B) induced by the perturbed flow in the presence of the basic 
magnetic field ; 

j, = a(e,+U x b) induced by the basic flow in the presence of the magnetic field 
disturbance. 
Among the two possible lengthscales S and h - i l k ,  i t  is always the smaller (which 
we will denote I) that  governs the spatial variation of the magnetic field disturbance. - 

Thus 
. B,e & 

8 ’  , j 2  - aB0u, j, - crB,CT- 31 - 
The vertical component of the velocity perturbation (and, through the continuity 
equation, each component of the velocity perturbation) is related t>o the displacement 
of the interface: 

( 2 2 )  
U& U& 
A ’  

u - u - -  I ’  W-- 

which leads to 
( 2 3 )  

Therefore j ,  and j, are negligible compared with j,. 
The linearized expressions for the perturbation of the electromagnetic forces (in 

which the suffix 1 is suppressed because only the conducting fluid is submitted t o  such 
forces) read 

where 

f = (Jb,,j, B,, - Jb,-jy B,), 

follows from (3) as the unperturbed eddy currents, and where its disturbance is 

\ 

(25a)  

The condition N ,  4 1 implies, as we demonstrated in 8 1, that  the conducting fluid 
cannot follow oscillating forces with frequency 2w, and that only the average 
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component (with respect to  the timescale w - l )  of electromagnetic forces is to be 
retained. The forces are therefore given by 

(26 a )  

B:cO k i + y k  l + i 6 ( k ,  ] aZ [ k i + y * k  - ___- 1 - i d  (k: - y k ) ]  .a*.> eik . r, ,- k )  e + 
k ( y + k )  2 k " = W { [ k ( y + k )  2 k 

(26c) where 01 = y + (1 - i ) / 6 .  

3. Dispersion relation and analytical results 

to electromagnetic forces are 
The equations of motion of the two incompressible and inviscid fluids subjected 

8V. 
at 

p . 2  +pj(VjV)Vj = - V < + F j .  

v.vj = 0. (276) 

After introduction of perturbations (defined in ( 5 ) )  proportional to c = co e i (s t+k .  r, 

and linearization with respect to co/&, elimination of the pressure leads to a 
second-order differential equation for the amplitude of the vertical component of the 
disturbance velocity wj(z) : 

(28) pj(s + k . Uj) (D2 - k2)  ~j = ik2fjz - D ( k  . fj), 

with D = a/&. 
The boundary conditions on ~7~ demand that i t  vanish far from the interface in the 
two fluids: 

and that the displacement of any point of the interface be unique and compatible 
with the expression (4) for zo(x, y, t )  (see Chandrasekhar 1961) : 

(29) Wl(Z + - 00) -+ 0, w2(z + + 00) + 0, 

Then the dispersion relation follows from the condition of continuity of normal stress, 
which can be written: 

where T is the surface tension. 

to the first order in E 

(31) (P2+P2)ZO = (P ,+Pl)zo- - -k2~o,  

After some algebra the expressions for wl(z) and ul,(z), which satisfy (22)-(24), are 

wl(z) = e(ek* i(s+ k . U,)  - wo(0) + wo(z)), ( 3 2 4  

w2(z)  = i c ( s + k . U 2 ) e - k Z ,  (32 b )  

where ulO(z) represents the contribution of the particular solution of (28) with the 
expressions (26) for the electromagnetic forces : 
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Taking the divergence of the equations of motion leads to the equation for the 
pressure perturbation : ik2pi = pi(s+ k . Uj)Dwi+ k . fi. 

In  the unperturbed state the pressure satisfies 

(34) 

This expression is deduced from the hydrostatic equilibrium of the insulating fluid 
and from the magnetostatic equilibrium of the conducting one; the angle brackets 
( ) mean that we only retain the mean value over a period according to our 
quasi-steady approximation. 

Substituting (35) in (31) gives the condition a t  the interface for the pressure 
perturbation : 

(36) 
B; Z o  

2P 8 
(Pz -P , ) ,o -~ (P , -~ l )g~o+ -- +Tk2zo = 0. 

Here the linearized expression for the magnetic pressure difference 

has been taken into account, and introduces in (36) the influence of the basic 
electromagnetic forces on the deformation of the interface. The dispersion relation 
is deduced from (34) and (36) : 

pl(s+ k . Ul)2+p2(s+ k . U2)' + g k ( p 2 - p l ) -  Tk3- F ( k ,  0) = 0. (38) 
This relation is quite similar to its analogue in classical hydrodynamics, but a new 
term appears which is the net result of the electromagnetic effects: 

pl ( s+k~U1) (~ ( , (0 ) -kwO(O))+  i ( k  . f ( O ) ) .  
B; k 

k k 
F ( k , O )  = - +i  

2P8 
(39) 

This function can be expressed in terms of the dimensionless wavenumber x = k6 and 
the angle I9 between the applied magnetic field and the wavevector: 

where 
[(X4+4)t+X']t+ (1  -x) [(X4+4)+-x2]+ 

4 2  ( 2 4  + 4)4 F(x) = ( F ( x )  - 1/x as x +  00).  (41) 

A parallel may be drawn between the electromagnetic term and the term relating 
to surface tension : both are independent of the velocity field because they only depend 
on the geometry of the interface and are therefore independent of the mechanical 
properties of the fluids. 

Sagardia's assumption, which only considers an infinitely conducting fluid, leads 
to the following corresponding electromagnetic term : 

B; k2 cos2 I9 

2P 

This is in perfect agreement with our analysis, since F(x) tends to unity when x 

The increment s is determined by a quadratic equation, which has in general two 
tends to zero with 6 (see figure 2). 
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complex roots: one leads to an amplification, the other to a damping down. Hence 
to prevent any perturbation form being amplified it is necessary that the discriminant 
of (38) be positive or zero to  ensure that s be a real root: 

-- 
' l P 2  k 2 ( U 1 -  U , ) 2 ~ o s 2 8 1 + g k ( p , - - p 2 ) + T k 3 + F ( k ,  8) 3 0,  

P1+ P2 
(43) 

where 8, denotes the angle (U,, k). 
The influence of each of the four terms involved in (36) upon the evolution of a 

disturbance is as follows. Whatever the values of U,, IT,, p,, p,, 8,, the first term is 
always negative and therefore has a destabilizing effect. This term is responsible for 
the Kelvin-Helmholtz instability. The second term, whose sign is given by the 
difference p1 -pz, expresses the stabilizing or destabilizing effect of gravity according 
to whetherp, is greater or less thanp,. This term is responsible for the Rayleigh-Taylor 
instability. The third term is always positive. Thus the surface tension, which 
provides a restoring force to any displacement of the interface that tends to bend 
it,  has a stabilizing effect. The stronger the local curvature of the interface, the 
stronger is the stabilizing effect. Such an effect is specific to the plane geometry, and 
it becomes destabilizing in an axisymmetric geometry for symmetric varicose 
deformations with wavelengths exceeding the circumference oi the cylinder (Chan- 
drasekhar 1961). The last term characterizes the presence of the electromagnetic field, 
whose influence appears to be always stabilizing ( F ( x )  2 0 and F ( x )  - 5-l when 
x+ 00)  except in the limit of very large wavelengths (z+O when k - 0 )  and of 
wavevectors perpendicular to the magnetic field (8 = $7) for which F ( k . 0 )  is zero. 
This effect is maximum when the skin depth is zero, and is quickly decreasing when 
the skin depth increases (figure 2). 

It is to be noticed that,  if the effect predicted by the analysis supposing a zero skin 
depth is qualitatively good, from a quantitative point of view important corrections 
are to be made when realistic cases of finite conductivities are considered. To be more 
precise let us consider the typical example where the skin depth is 1.6cm (i.e. 
frequency of the order of 1 kHz in liquid metals). To stabilize disturbances of 
wavelength of 1 cm upon which surface tension is ineffective the required power is 
F-'(x = 10) times greater (i.e. 10 times greater) than that predicted by Sagardia's 
theory. 

In the context of the levitation problem, as studied by Sagardia, and of the 
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magnetic shaping of liquid-metal columns, as studied by Etay & Gamier, the 
constant-field analysis is only valid for wavelengths smaller than the scale of variation 
of the applied magnetic field, typically a few centimetres. For wavelengths shorter 
than a few tenths of a millimetre the stabilizing effect of surface tension prevails over 
that of the magnetic field. Therefore the range of wavelengths in which the results 
of this analysis are most relevant is 10-2-10 cm. 

4. Conclusion 
The effect of a uniform alternating magnetic field on the stability of a plane 

interface between a conducting liquid and an insulating atmosphere has been 
investigated with particular attention given to  the analysis of the influence of the 
electrical conductivity of the liquid. This effect is always stabilizing except for 
large-wavelength disturbances of the interface and for disturbances whose wave- 
vectors are perpendicular to  the applied magnetic field. For a given wavelength this 
effect is maximum when the skin depth is zero (infinite electrical conductivity), and 
decreases when the skin depth increases. Differences then appear between the 
intensities of the alternating magnetic fields able to  stabilize a given configuration 
deduced from theories assuming a zero skin depth and the theory taking skin effect 
into account. In  some cases these differences may be so important that  the order 
of magnitude of the power necessary to  generate the magnetic field, whose intensity 
is deduced from the asymptotic theory, is wrong. 

Though the analysis is limited to plane interfaces, the results are valuable in any 
cylindrical geometries if the skin depth 6 remains small compared with the typical 
radius R of the conducting medium. This study can be extended to the general case 
of liquid-metal jets for any values of the parameter SIR. In  a cylindrical geometry 
surface tension tends to increase the local curvature of the perturbed interface and 
can compete with the stabilizing effect of the magnetic field. 

In the scope of industrial applications it is interesting to estimate the difference 
between a x .  devices and d.c. devices with regard to their respective stabilizing 
influences. The effect of an axial magnetic field on the capillary instability of a 
liquid-metal jet gives a good example. Chandrasekhar’s analysis conclusion for a d.c. 
magnetic field is that  ‘for experiments with mercury, magnetic fields of the order of 
lo4 G will be needed to demonstrate the stabilizing effect of an axial magnetic field ’ 
and 3105G, a really enormous field, is necessary ‘to overcome significantly the 
paramount effects of finite resistivity’. With an a.c. axial magnetic field and mercury 
only lo3 G are sufficient to  obtain a good stabilization. This illustrates the advantage 
of a.c. fields over d.c. fields. Basically the difference is clear: the typical parameter 
of d.c. field effects is the magnetic Reynolds number R,, which is always small, 
whereas a x .  magnetic-field effects are governed by the parameter R, = p a d 2 ,  which 
may be large since high frequencies can compensate for small conductivities. 

The authors are most indebted to  one of the referees who examined the first version 
of the paper and discovered a basic flaw; they are well pleased to  acknowledge him 
for helping them to improve quite appreciably the results. 

Addendum 
While this paper was under revision, another closely related paper was submitted 

to, and published by, this Journal (McHale & Melcher 1982), in which experimentally 
observed instabilities of a free surface of liquid metal are reported. A theory is also 
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proposed, which concludes that a high-frequency magnetic field has a destabilizing 
influence when the non-dimensional number Bi/,upvw (which is the square of the 
Hartmann number M = (a /pv) i  Bo6 based upon the skin depth) is larger than some 
critical value (of the order of 100 when the boundaries are rigid, and 70 when a free 
surface is present). 

I n  order to clarify the difference between this theory and that of the present paper, 
which are concerned with two different problems, a few statements have to  be made. 

(i) McHale & Melcher do not neglect eddy currents due to the interaction of the 
velocity and the applied magnetic field, even though these are extremely small (of 
the order of the magnetic Reynolds number R,, = p m d )  when compared with the 
eddy current due to the pulsation. By contrast, we do neglect them (see §2), since 
it is our belief that  in the present context any phenomenon on the laboratory scale 
should be explicable within the framework of an asymptotic theory a t  zero magnetic 
Reynolds number. 

(ii) In  the present paper, disturbances of any quantities are just those generated 
by some deformation of the interface zo(r, t ) .  They are proportional to zo, and they 
would reduce to zero if the fluid were bounded by a rigid plane. I n  the McHale & 
Melcher theory the deformation of the upper free surface, when present, is only 
introducing some minor changes in the numerical values, but does not affect 
appreciably the main behaviour of the solution of the dispersion equation. 

(iii) McHale & Melcher pointed out discrepancies between the observed (1-10 s) 
and the predicted (102-103 s) growth rates, which lead them to believe that the 
observed motion could be driven by thermal convection due to Joule heating. 

Finally it is the feeling of the authors of the present paper, who also conducted 
numerous experiments with liquid metals in the presence of a.c. magnetic fields, that 
the instabilities reported by McHale & Melcher do occur in some circumstances. But 
we consider that  the proper theory, the governing mechanisms, and the precise 
conditions of instability, have still to be discovered. The present paper, demonstrating 
the stabilizing influence of an a.c. magnetic field on a disturbed free surface, is just 
one step in this search. 
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